New Approaches in Chemical Risk Assessment

Dr Ans Punt
RIKILT Wageningen University & Research Centre, NL
The changing landscape of toxicology

- Large # of chemicals with limited toxicological information
- Novel material and processes (e.g. nanomaterials, biotech products)
- Combined exposure
- New technologies (e.g. high throughput assays, 'omics, bioinformatics, systems biology, computational toxicology)
- Human relevance testing laboratory species is being questioned
- Increasing demand non-animal approaches
Paradigm shift in toxicology

Paradigm shift in toxicology

old/present way:

Compounds

All: animal testing

Mechanism

in vivo/
in vitro

Cellular/
molecular
mode of action

few toxic compounds
with known mode of action

new vision:

few toxic compounds
requiring animal testing

animal testing

Definition of
toxicity pathways

All: in silico/in vitro testing

Compounds

Leist et al., ALTEX 25(2), 103-114
Definition of adverse outcome pathways

21st century toxicity evaluation = “Bottom up”
defining adverse outcome pathways

- Chemical structure & Properties
- Molecular initiating event
- Cellular responses
- Organ Response
- Organism Response

Conventional toxicity testing = “Top down”
High throughput-screening e.g. ToxCast

EPA’s Toxicity Forecaster (ToxCast)
> 1,800 chemicals
> 700 high-throughput assays ~ 300 signaling pathways

<table>
<thead>
<tr>
<th>Assay Provider</th>
<th>Biological Response</th>
<th>Target Family</th>
<th>Assay Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEA</td>
<td>cell proliferation and death</td>
<td>Response Element</td>
<td>viability reporter</td>
</tr>
<tr>
<td>Aprecda</td>
<td>cell differentiation</td>
<td>Transporter</td>
<td>morphology reporter</td>
</tr>
<tr>
<td>Attogene</td>
<td>mitochondrial depolarization</td>
<td>Cytokines</td>
<td>conformation reporter</td>
</tr>
<tr>
<td>BioSeek</td>
<td>protein stabilization</td>
<td>Kinases</td>
<td>enzyme reporter</td>
</tr>
<tr>
<td>CellzDirect</td>
<td>oxidative phosphorylation</td>
<td>Nuclear Receptor</td>
<td>membrane potential reporter</td>
</tr>
<tr>
<td>NCGC/Tox21</td>
<td>reporter gene activation</td>
<td>CYP450 / ADME</td>
<td>binding reporter</td>
</tr>
<tr>
<td>NHEERL MESC</td>
<td>gene expression (qNPA)</td>
<td>Cholinesterase</td>
<td>inducible reporter</td>
</tr>
<tr>
<td>NHEERL NeuroTox</td>
<td>receptor activity</td>
<td>Phosphatases</td>
<td></td>
</tr>
<tr>
<td>NHEERL Zebrafish</td>
<td>receptor binding</td>
<td>Proteases</td>
<td></td>
</tr>
<tr>
<td>NovaScreen</td>
<td></td>
<td>XME metabolism</td>
<td></td>
</tr>
<tr>
<td>Odyssey Thera</td>
<td></td>
<td>GPCRs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ion Channels</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Readout Type</th>
<th>Species</th>
<th>Tissue Source</th>
<th>Detection Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Human</td>
<td>Lung</td>
<td>qNPA and ELISA</td>
</tr>
<tr>
<td>Multiplexed</td>
<td>Rat</td>
<td>Breast</td>
<td>Fluorescence & Luminescence</td>
</tr>
<tr>
<td>Multiparametric</td>
<td>Mouse</td>
<td>Vascular</td>
<td>Alamar Blue Reduction</td>
</tr>
<tr>
<td></td>
<td>Zebralish</td>
<td>Skin</td>
<td>Arrayscan / Microscopy</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Kidney</td>
<td>Reporter gene activation</td>
</tr>
<tr>
<td></td>
<td>Boar</td>
<td>Cervix</td>
<td>Spectrophotometry</td>
</tr>
<tr>
<td></td>
<td>Rabbit</td>
<td>Testis</td>
<td>Radioactivity</td>
</tr>
<tr>
<td></td>
<td>Cattle</td>
<td>Uterus</td>
<td>HPLC and HPEC</td>
</tr>
<tr>
<td></td>
<td>Guinea pig</td>
<td>Brain</td>
<td>TR-FRET</td>
</tr>
</tbody>
</table>

http://www.tera.org/Peer/EDSP/presentations/Dix_HTP_Assays.pdf
High throughput screening e.g. ToxCast

Sipes et al, 2013, Reif et al., 2010
Advanced in vitro models

e.g. body-on-a-chip, (human) stem cell derived assays

D.E. Ingber, Trends in Cell Biology, (21) 2011
Reverse dosimetry

In vitro concentration-response curve

In vivo dose-response curve

Reverse Dosimetry

PBPK/other kinetic models

Reverse dosimetry of ToxCast data by Wetmore et al., 2012

Example Bisphenol A

Bioactivity Data for Compound Bisphenol A [CID: 6623], Active in 23 of 507 Targets AC50 1.1- 44.7 μM (Pubchem); Wetmore et al. 0.016- 181.5 μM

Reverse dosimetry

\[C_{ss} = \frac{\text{oral dose rate}}{\left(GFR \times F_{ub} \right) + \left(Q_1 \times F_{ub} \times \frac{C_l\text{int}}{Q_1 + F_{ub} \times C_l\text{int}} \right)} \]

Renal clearance

Hepatic clearance based on in vitro measurements

0.86 μM (Css)
1.1 μM (AC50)

1 mg/kg bw (oral dose)
? mg/kg bw

Reverse dosimetry of ToxCast data by Wetmore et al., 2012

Example Bisphenol A

Bioactivity Data for Compound Bisphenol A [CID: 6623], Active in 23 of 507 Targets AC50 1.1- 44.7 μM (Pubchem); Wetmore et al. 0.016- 181.5 μM

Reverse dosimetry

\[C_{ss} = \frac{\text{oral dose rate}}{\left(GFR \times F_{ub} \right) + \left(\frac{Q_1 \times F_{ub} \times C_{int}}{Q_1 + F_{ub} \times C_{int}} \right)} \]

Renal clearance

Hepatic clearance based on in vitro measurements

0.86 μM (Css) 1 mg/kg bw (oral dose)

1.1 μM (AC50) ~1.3 mg/kg bw

Reverse dosimetry of ToxCast data by Wetmore et al., 2012

Estimated daily intake of each chemical

Human in vivo equivalent doses

FIG. 3. Continued.
Some challenges in achieving a paradigm shift in toxicity testing

- Toxicological/biological space adequately covered?
- Reliability of extrapolation from in vitro toxicity pathways to biologically relevant hazards? (e.g. adequate cell models, exposure duration)
- Establishing fitness-for-purpose of new methods (who and how)? (e.g. anchoring against data from laboratory species?)
- Quantitative accuracy of in vitro – in vivo extrapolations?
- Domain of applicability?
New approaches for Food & Food ingredients

ILSI Task Force: New Approaches to Chemical Risk Assessment for Food & Food Ingredients

Objectives:
- Examine the scientific opportunities of novel approaches for food chemical risk assessment.
- Improve and implement these new technologies in risk assessment for toxicity testing in food industry.

ILSI EU expert group:
Exploitation of ToxCast data on opportunities for their use in the safety risk assessment of food chemicals.
Possibilities and challenges ToxCast data for food related chemicals.

False positive (fluorescence quenching)?

Lack of metabolic activation?

Summary

- A marked change is taking place in toxicology

- New approaches for safety assessment, based on a **mechanistic understanding** of biological action and **exploiting an array of new technologies** (eg high throughput assays, 'omics, bioinformatics, systems biology, computational toxicology)

- These new approaches need to be further evaluated with respect to opportunities and challenges for food related chemicals
Acknowledgements

- Members of the ILSI Task Force on new approaches on chemical risk assessment and the ILSI expert group on the Exploitation of ToxCast data
- IAFP Organization for Speaker Support Travel Grant