Danish Survey (2010-2011) of PFAS migration from food packaging paper and board to food simulants and food

Xenia Trier
National Food Institute
Technical University of Denmark

ILSI 2012,
November 15th 2012
Berlin, Germany
Thanks to colleagues in project

• Colleagues at DTU-Food
 Gitte Alsing Pedersen
 Anni Helleskov
 Lisbeth Krüger Jensen
 Lone Hertz
 Kit Granby

• Students
 Mette Regitze von Barner (M.Sc.)
 Linda Bengtström (Ph.D.)

• Funding
 DTU-Food
 Food and Veterinary Admin.
 CeHoS
Outline

• Background: PFAS in food paper and board
• Design of the Survey on PFAS in paper and board
• PFAS quantification by UHPLC-ESI-MS/MS
• Results – migration and survey
• Conclusions
• Outlook
PFAS prevent uptake of grease/water from food - *fluorinated chains* repel water and oils/fats

Applied (sized/coated)
- Internally: Into the pulp, for flexible paper
- Externally: On the surface, for board in printing

Attachment to paper
- Deposited or bound to paper, e.g. via ester bonds

Migration from paper
- Direct contact with the food at high temperatures
- Single use packaging => repeated exposure
PFAS in industrial blends and paper migrates

More than 100 substances

Complex mixtures
- mono, di, tri-PAPs
- S-diPAPs
- SN-diPAPs
- Per-/poly-fluoropolyethers (PFPEs)
- Fluoroacrylates
- PFOS derivatives e.g. N-MeFOSE, N-EtFOSE

Fluorinated polyethers \(F(CF_2)y(CH_2CH_2O)xCH_2CH_2OH \)
Structures of per and poly-fluorinated alkyl surfactants (PFAS)

A surfactant has a polar head and hydrophobic tail

Per-fluorochain: only CF₂
Poly-fluorinated chain: CF₂ and CH₂

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{OH})</td>
<td>PFCA</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{SO}_2\text{OH})</td>
<td>PFSA</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{S} \text{NH}_2)</td>
<td>PFSAA</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{OH})</td>
<td>FTOH</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{PO}_2\text{OH})</td>
<td>monoPAPS</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{PO}_2\text{OH})</td>
<td>diPAPS</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{S} \text{PO}_2\text{OH})</td>
<td>S-diPAPS</td>
</tr>
<tr>
<td>(\text{F} {\text{CF}_2}_x \text{S} \text{PO}_2\text{OH})</td>
<td>Fluoroacrylate</td>
</tr>
</tbody>
</table>
Degradation of PFAS

Poly-fluorinated degrade to per-fluorinated substances

mono, di-PAPS
mono, di-polyfluorinated alkyl phosphate esters

heat, water
biodegradation

FTOH
fluorotelomer alcohols

oxidation
biodegradation

PFCA
perfluoro alkyl carboxylates
(e.g. PFOA)
Health concerns of PFAS

• **Toxicity of PFAS**
 - persistent (PFOS listed as POPs on Stockholm Conv.)
 - highly bioaccumulative: 4-9 years half lives
 - likely human carcinogens of PFOA
 - immunosuppressants
 - metabolic disrupters: cholesterol, obesity?
 - endocrine disrupting effect of PFCA, FTOH and PAPs

• **Few toxicity data on PFAS**
 PFOA TDI: 1.5 ug/kg bw/day
 PFOS TDI: 0.15 ug/kg bw/day

• **Degradation products of perPFAS are found everywhere**
 - in the environment and in animals
 - human blood (>95% of US citizens, levels 2-30 000 ng/mL)
 - in water, dust, materials, food and food packaging

• **Sources of are not accounted for**
 - 30-70% of fluorocarbons in human blood are “unknown”
Background for the Survey

- **US FDA 2005**, **2008**: PFAS in popcorn bags and in popcorn and oil
- Visit to U. of Toronto 2006: 3 of 10 samples had PFAS by 19F NMR

- **PhD 2007-2011**: PFAS in paper and board for food packaging
- EU Commission recommendation to national authorities March 2010: Measure PFOA, 8:2 FTOH, 8:2 mono and diPAPs in food
- EU PerFOOD project: focus on PFCA, FTOH
- Danish Veterinary and Food Authority 2010: **Survey PFAS in packaging**

- Results of PhD 2011, 4, 5:
 - **74 samples** from retail shops in Denmark (54), Sweden (6), Canada (15)
 - 57% samples contained PAPs; 16% ‘unknown’ PFAS by 19F NMR
 - 510 µg g$^{-1}$ paper (0.08 – 9100 µg g$^{-1}$ paper)

 => Media attention in fall 2011 in DK
 => Risk of migration?

1 Begley et al. 2005: Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam 22(10):1023–1031, 9
Legislation for PFAS in Europe

• EU Framework Regulation 1935/2004, Article 3:
 substances may not migrate in amounts harmful to human health

• No specific EU legislation on paper and board
 => no specific migration limits
 => no technical legislation on testing

• Other legislation/guidance:
 German BfR, US FDA
 Council of Europe (9 PFAS): Use plastic testing conditions for paper and board

• Action limits made for survey – for further toxicological evaluation
 PFCA, FTOH, PAPs: 90 ug PFOA eq./kg food (as non-detection compounds)
 PFSA and derivatives: 9 ug PFOS eq./kg food (as Cramer III compounds)
Design of Survey on PFAS in paper and board

- Originally designed as enforcement campaign => ‘suspect’ samples
- changed to a survey because no specific EU limits for PAPs
- 83 samples analysed:
 65 by food inspectors (without food)
 18 by the DTU-Food (with food)
- Sampled 2010-2011 in Denmark

<table>
<thead>
<tr>
<th>No. of samples</th>
<th>Type of packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Bread (paper bags)</td>
</tr>
<tr>
<td>18</td>
<td>Flour, oats and cereals (paper bags)</td>
</tr>
<tr>
<td>4</td>
<td>Bread and cake mixtures (board boxes)</td>
</tr>
<tr>
<td>10</td>
<td>Cakes, biscuits and tartelettes</td>
</tr>
<tr>
<td>4</td>
<td>Microwave popcorn (paper bags)</td>
</tr>
<tr>
<td>4</td>
<td>Dairy products (board)</td>
</tr>
<tr>
<td>3</td>
<td>Chocolate (board)</td>
</tr>
<tr>
<td>3</td>
<td>Coffee (paper bags)</td>
</tr>
<tr>
<td>3</td>
<td>Tea (paper bags)</td>
</tr>
<tr>
<td>3</td>
<td>Baking paper</td>
</tr>
<tr>
<td>5</td>
<td>Muffin- and baking (paper cups)</td>
</tr>
<tr>
<td>8</td>
<td>Sandwich and lunch packaging (paper sheets)</td>
</tr>
<tr>
<td>8</td>
<td>Take away food (board and paper)</td>
</tr>
<tr>
<td>4</td>
<td>Board packaging (various)</td>
</tr>
</tbody>
</table>
Design of Survey:
Choice of migration test conditions

• **Screening tests**
 - 50% ethanol, 3 subsamples, 3 days, 60 °C
 - semi-quantitative SIR-method

• Screening samples above action limits => new **migration tests**
 - migration times according to use
 - 3 single sub-samples,
 - verification by MRM-method

• Fatty, emulsified foods:
 - 50% ethanol,
 - times and temperatures according to use

Dry foods and high T:
 Is Tenax suitable for PFAS?

• => ... so in the end 5 food analyses were made for packaging
 - with high PFAS levels
 - intended for dry foods and popcos
Quantitative PFAS analysis by UHPLC-MS/MS

Waters Acquity UHPLC–Quattro Ultima ESI− MS/MS MeOH/water with ammonia (pH 9.7)

Screening: SIR method,
Migration: MRM method

49 PFAS incl. isomers
If all PFAS quantified in one run
=> decrease sensitivity
=> Split up in three verification methods:
 1) Even PFCA + PFSA + S-diPAPs
 2) Uneven PFCA + FTOH
 3) Mono- + diPAPs
Matrix effects by NaCl
- internal std's correct for matrix and time effects

• External calibration

• Internal calibration

• also correct for up to 3 days in vials

DTU Food
National Food Institute
Results - screening

- Screening of 83 paper and board:
 45% (37 of 83) had Group 1 PFAS > 90 µg/kg food if all migrate

- Interference from matrix and time consuming => not used further on

- Major groups:
 - diPAPs
 - FTOHs
 - PFCAs
 - two samples w high levels of S-diPAPs

- PFSA hardly present

<table>
<thead>
<tr>
<th>Food</th>
<th>Area (dm²)</th>
<th>Group 1 µg/kg</th>
<th>Food</th>
<th>Area (dm²)</th>
<th>Group 1 µg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrap</td>
<td>40</td>
<td>130</td>
<td>Melpose</td>
<td>10</td>
<td>380</td>
</tr>
<tr>
<td>Wrap</td>
<td>40</td>
<td>87</td>
<td>Melpose</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Tepose</td>
<td>40</td>
<td>300</td>
<td>Mellemlæg</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>Tepose</td>
<td>40</td>
<td>240</td>
<td>Läkerol</td>
<td>40</td>
<td>720</td>
</tr>
<tr>
<td>Tepose</td>
<td>40</td>
<td>89</td>
<td>Kage</td>
<td>20</td>
<td>5000</td>
</tr>
<tr>
<td>Tartelet</td>
<td>40</td>
<td>1900</td>
<td>Kage</td>
<td>20</td>
<td>590</td>
</tr>
<tr>
<td>Tartelet</td>
<td>40</td>
<td>1200</td>
<td>Kage</td>
<td>20</td>
<td>420</td>
</tr>
<tr>
<td>Rosinpakke</td>
<td>15</td>
<td>800</td>
<td>Kage</td>
<td>20</td>
<td>140</td>
</tr>
<tr>
<td>Pølsebakke</td>
<td>40</td>
<td>270</td>
<td>Kaffepose</td>
<td>10</td>
<td>230</td>
</tr>
<tr>
<td>Popcorn</td>
<td>100</td>
<td>1200</td>
<td>Kaffe/the</td>
<td>40</td>
<td>310</td>
</tr>
<tr>
<td>Popcorn</td>
<td>100</td>
<td>1100</td>
<td>Kaffe/the</td>
<td>40</td>
<td>250</td>
</tr>
<tr>
<td>Popcorn</td>
<td>100</td>
<td>660</td>
<td>Fastfood</td>
<td>40</td>
<td>210</td>
</tr>
<tr>
<td>Popcorn</td>
<td>100</td>
<td>320</td>
<td>Chokolade</td>
<td>40</td>
<td>390</td>
</tr>
<tr>
<td>Pommesfrit</td>
<td>40</td>
<td>1100</td>
<td>Chokolade</td>
<td>40</td>
<td>120</td>
</tr>
<tr>
<td>Pommesfrit</td>
<td>40</td>
<td>590</td>
<td>Burger</td>
<td>40</td>
<td>790</td>
</tr>
<tr>
<td>Müslipose</td>
<td>10</td>
<td>300</td>
<td>Brødpose</td>
<td>10</td>
<td>770</td>
</tr>
<tr>
<td>Müslipose</td>
<td>10</td>
<td>160</td>
<td>Brødpose</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Muffinsform</td>
<td>20</td>
<td>140</td>
<td>Box Small</td>
<td>40</td>
<td>1160</td>
</tr>
<tr>
<td>Muffinsform</td>
<td>20</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results migration and food

MRM analysis of migrates

- 43 samples taken for further analysis
 - 50% ethanol, 60 °C, 2 hrs- 1 day, exact surface area-to volume food

- Only PFAS with authentic standards were quantified
 - 25 had contents > 1 ug/kg
 - 8 had contents > 90 ug/kg

MRM analysis of 5 food samples (SPE clean-up)

- 2 Popcorn – popped in bag: 2.2-18 ug PFOA eq./kg
- 1 Coffee – brewed: < LOD
- 3 Fluor - 10 days in bag: < LOD
- Cake cups – migration: still need to be tested in cake

- High temperatures and water => enhance migration
 (hydrolysis and wetting of paper)
Test of factors influencing PAPs migration into simulants

• 5 - 20 °C: Increasing temperature => decrease migration (behave as non-ionic surfactants?)
• 20 - 35 °C: Increasing temperature => increase migration (increased wetting)

• 0 - 2.5%: Increasing NaCl => increase migration (decreased cmc)
• 2.5 - 5%: Increasing NaCl => decrease migration (more polar solvent)

• 0.5 - 3 hrs: Increasing time => decrease migration (fast release of adsorbed PAPs, but re-adsorption to surfaces?)
• 3 - 6 hrs: Increasing time => increase migration (release of chemisorbed PAPs?)

• Compound depended 6:2 monoPAPs: no effect of time equilibrium reached)
PAPs migration to butter

Recoveries

<table>
<thead>
<tr>
<th></th>
<th>6:2 monoPAPs</th>
<th>8:2 monoPAPs</th>
<th>6:2/6:2 diPAPs</th>
<th>8:2/8:2 diPAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter 1</td>
<td>110</td>
<td>98</td>
<td>(218)</td>
<td>115</td>
</tr>
<tr>
<td>Butter 2</td>
<td>98</td>
<td>109</td>
<td>123</td>
<td>112</td>
</tr>
<tr>
<td>Butter 3</td>
<td>110</td>
<td>100</td>
<td>113</td>
<td>111</td>
</tr>
<tr>
<td>Butter 4</td>
<td>102</td>
<td>93</td>
<td>112</td>
<td>104</td>
</tr>
<tr>
<td>Average</td>
<td>105</td>
<td>100</td>
<td>116</td>
<td>111</td>
</tr>
<tr>
<td>recovery (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSD (%)</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Master thesis by Mette R. von Barner (M.Sc.): Migration of per- and polyfluoroalkyl substances from paper packaging into food simulants and butter
PAPs migration into butter
contact time: 6 hours

Migration temperature: 5 °C

Migration temperature: 20 °C

Human exposure, but
Temperatures < 20 °C => 50% EtOH overestimates

Master thesis by Mette R. von Barner (M.Sc.): Migration of per- and polyfluoroalkyl substances from paper packaging into food simulants and butter
Conclusions

• PAPs and FTOH-derived **PFAS still used** in ~45% of food paper and board packaging (2010-2011)

• High contents in migrates, migration to popcorn, butter; low migr. to dry foods => **human exposure – what is the exact level?**

• Types of PFAS change rapidly: PFOS-based -> PAPs -> acrylates -> PFPE => **Challenge to develop qualitative and quantitative methods fast enough**
 Lack of authentic and mass labelled standards => semi-quantitative
 => TDI values are lacking => difficult to make risk assessment

• Survey made inspected producers aware of PFAS => **industry show data**

• Plastics migration test conditions do not mimic migration to food well => **Test specific content in paper** (fast) or **test in food** (time consuming)?
 => **Test sum of PFCA precursors** (FTOH, PFCA after forced degradation)?
Analyses of specific substances in complex mixtures: takes time and costly
 => authority response time is long, fewer substances can be measured

Most substances are not monitored for by industry or enforcement
 => Are consumers adequately protected by Framework Regulation, Art. 3?
 => Need for harmonised principles to test for Article 3 substances
 => Harmonised way to deal with semi quantitative data?
 Threshold of Regulatory Concern? Database of TDIs?

More focus on screening by authorities (content in packaging)
 => industry show compliance (quantify)

For PFAS: Alternatives to specific testing:
 => Group sum of PFCA, PFOS precursors, use TDI PFOA, PFOS for risk assessm.
 => Complex mixtures/oils/ethers: Sum all peaks, quantify against one std

Continued need to understand migration and to develop methods
 for surfactants in paper and board: emerging PFAS, in packaging, food, humans